Effects of jet pattern on single-phase cooling performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme
نویسندگان
چکیده
This study explores the single-phase cooling performance of a hybrid cooling module in which a series of micro-jets deposit coolant into each channel of a micro-channel heat sink. This creates symmetrical flow in each micro-channel, and the coolant is expelled through both ends of the micro-channel. Three micro-jet patterns are examined, decreasing-jet-size (relative to center of channel), equal-jet-size and increasing-jet-size. The performance of each pattern is examined experimentally and numerically using HFE 7100 as working fluid. Indirect refrigeration cooling is used to reduce the coolant’s temperature in order to produce low wall temperatures during high-flux heat dissipation. A single heat transfer coefficient correlation is found equally effective at correlating experimental data for all three jet patterns. Three-dimensional numerical simulation using the standard k–e model shows excellent accuracy in predicting wall temperatures. Numerical results show the hybrid cooling module involves complex interactions of impinging jets and micro-channel flow. Increasing the coolant’s flow rate strengthens the contribution of jet impingement to the overall cooling performance, and decreases wall temperature. However, this advantage is realized at the expense of greater wall temperature gradients. The decreasing-jet-size pattern yields the highest convective heat transfer coefficients and lowest wall temperatures, while the equal-jet-size pattern provides the greatest uniformity in wall temperature. The increasing-jet-size pattern produces complex flow patterns and greater wall temperature gradients, which are caused by blockage of spent fluid flow due to the impingement from larger jets near the channel outlets. 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
Effects of jet pattern on two-phase performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme
This paper explores the two-phase cooling performance of a hybrid cooling scheme in which a linear array of micro-jets deposits liquid gradually along each channel of a micro-channel heat sink. The study also examines the benefits of utilizing differently sized jets along the micro-channel. Three micro-jet patterns, decreasing-jet-size (relative to center of channel), equal-jet-size and increas...
متن کاملSingle-phase hybrid micro-channel/micro-jet impingement cooling
A new hybrid cooling scheme is proposed for high-flux thermal management of electronic and power devices. This scheme combines the cooling benefits of micro-channel flow and micro-jet impingement with those of indirect refrigeration cooling. Experiments were performed to assess single-phase cooling performance using HFE 7100 as working fluid. Excellent predictions were achieved using the standa...
متن کاملSingle-phase and two-phase heat transfer characteristics of low temperature hybrid micro-channel/micro-jet impingement cooling module
This study examines the single-phase and two-phase cooling performance of a hybrid micro-channel/micro-jet impingement cooling scheme using HFE 7100 as working fluid. This scheme consists of supplying coolant from a series of jets that deposit liquid into the micro-channels. A single-phase numerical scheme that utilizes the k–e turbulent model and a method for determining the extent of the lami...
متن کاملCorrelation of critical heat flux in hybrid jet impingement/micro-channel cooling scheme
Experiments were performed to investigate the two-phase cooling characteristics of a new hybrid cooling scheme combining the cooling attributes of slot jets and micro-channel flow. A test module was constructed in which dielectric PF-5052 liquid was introduced through five 0.48 mm wide and 12.7 mm long slot jets, each leading to a 1.59 mm wide and 1.02 mm deep channel. Increases in flow rate an...
متن کاملExperimental and numerical investigation of single-phase heat transfer using a hybrid jet-impingement/micro-channel cooling scheme
Experimental and numerical methods were used to explore the cooling performance of a new hybrid device consisting of a slot jet impinging into a micro-channel, thus capitalizing upon the merits of both cooling configurations. The three-dimensional heat transfer characteristics of this device were analyzed using the standard k–e turbulent model. Numerical predictions for liquid PF-5052 show exce...
متن کامل